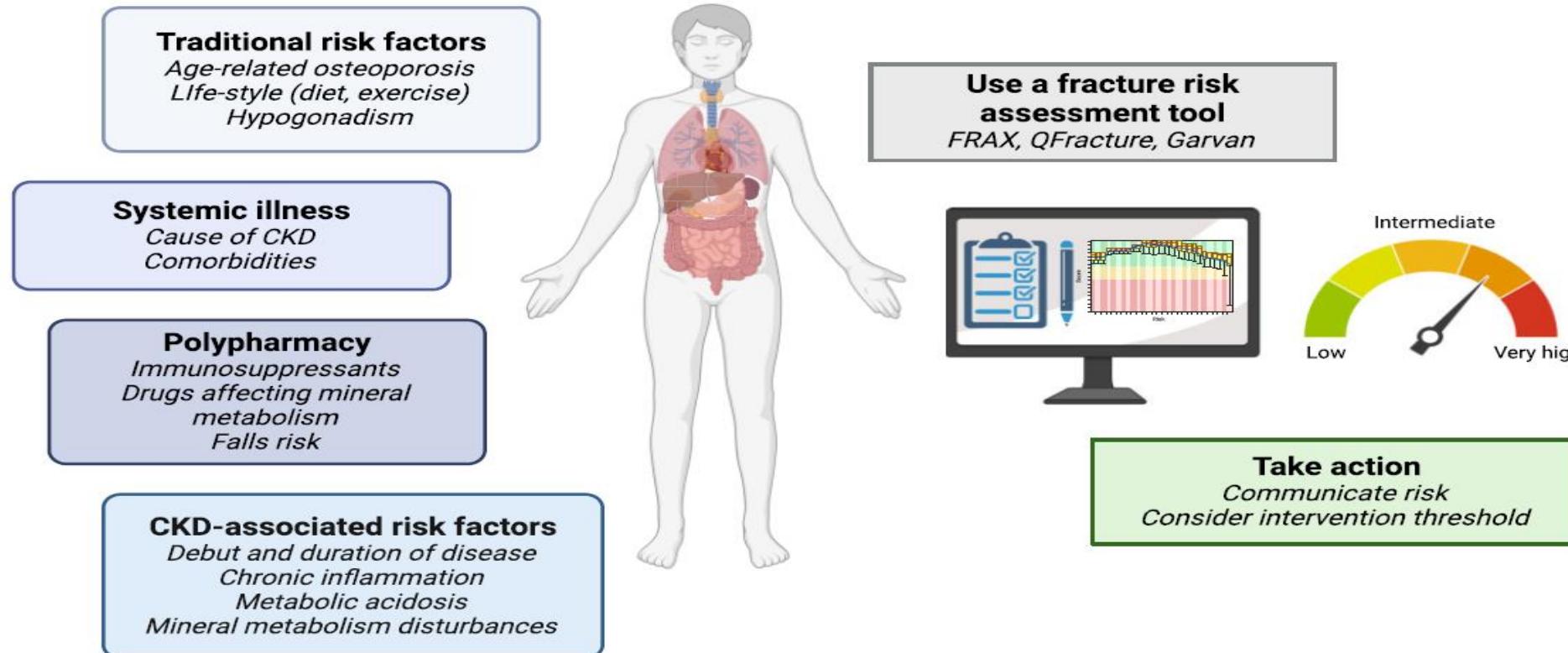


1

Bone Health Evaluation in a CKD and Post-Transplant Patient: A Case-Based, Question-Driven Approach

Dr N.Shamspour
Assistant Professor of Nephrology
Kerman University of Medical Sciences

Case Introduction



- 65-year-old male with ADPKD
- Pre-emptive kidney transplant 10 years ago
- Graft loss after recurrent BK virus nephropathy
- On maintenance hemodialysis for 5 years
- Current medications: Prednisolone 5mg/d, Calcium carbonate 500 mg/bid, Sevelamer 800 mg/tds, Valzomix 80-5/d, Pantoprazole 40mg/d, Nephrovit/d
- No active bone pain; physical exam unremarkable
- Family history: **Sister (72-year-old) with renal transplant died from hip fracture after a fall (1 month ago)**
- Patient and family concerned about osteoporosis and fracture risk

How should we systematically evaluate and manage bone health in this high-risk CKD patient with multiple traditional and CKD-related risk factors?

Define the risk profile with the aid of a fracture prediction tool

In CKD patients, fracture risk assessment must integrate clinical factors, CKD-specific abnormalities, and prediction tools—not BMD alone.

Clinical Risk Stratification: Key Questions

Key Questions for Fracture Risk Assessment

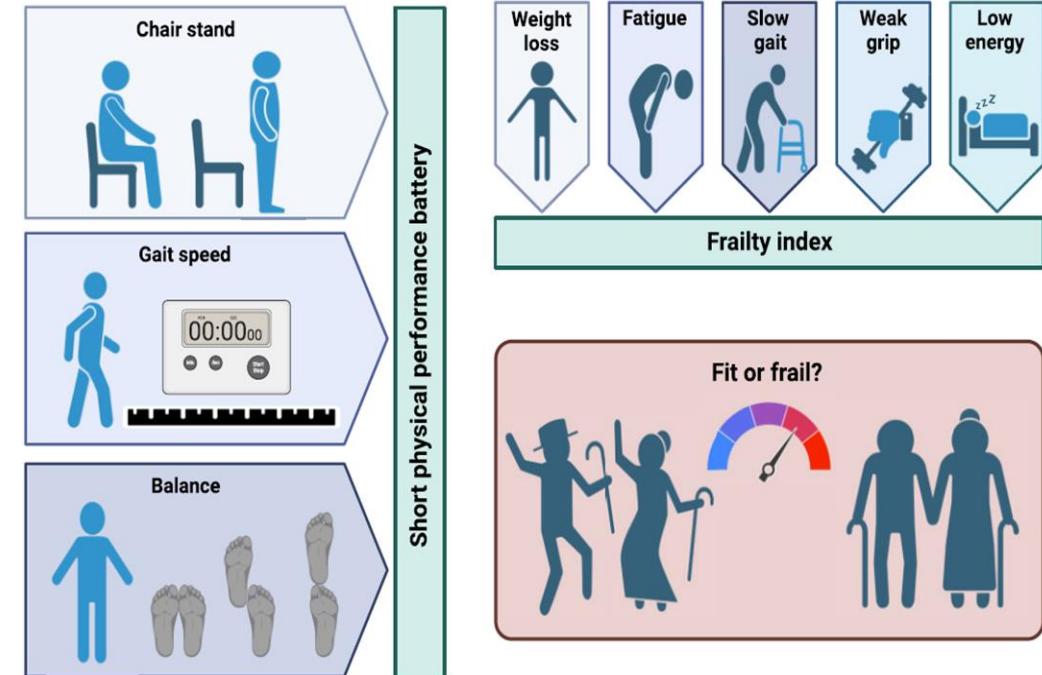
- Prior fragility fractures?
- Family history of major osteoporotic fractures?
- History of falls or imbalance?
- Duration and cumulative dose of glucocorticoids?
- Symptoms suggesting vertebral fracture (height loss, back pain)?
- Physical frailty indicators?

“Physical frailty is a major, often overlooked, determinant of fracture risk—**independent of BMD.**”

Physical Frailty as a Fracture Risk Modifier

Physical frailty reflects reduced physiologic reserve and impaired resilience to stressors.

Key features:


- Slow gait speed
- Muscle weakness
- Exhaustion
- Reduced physical activity
- Impaired balance and falls

Clinical relevance in CKD:

- Strongly associated with falls and fractures
- Predicts fracture risk **independent of BMD**
- Highly prevalent in dialysis and transplant candidates

Implication:

Frailty assessment should complement DXA and fracture risk prediction tools.

Which components of this patient's clinical history place him in the high-risk category before any imaging or labs?"

Risk Factor Mapping

High-risk features (major):

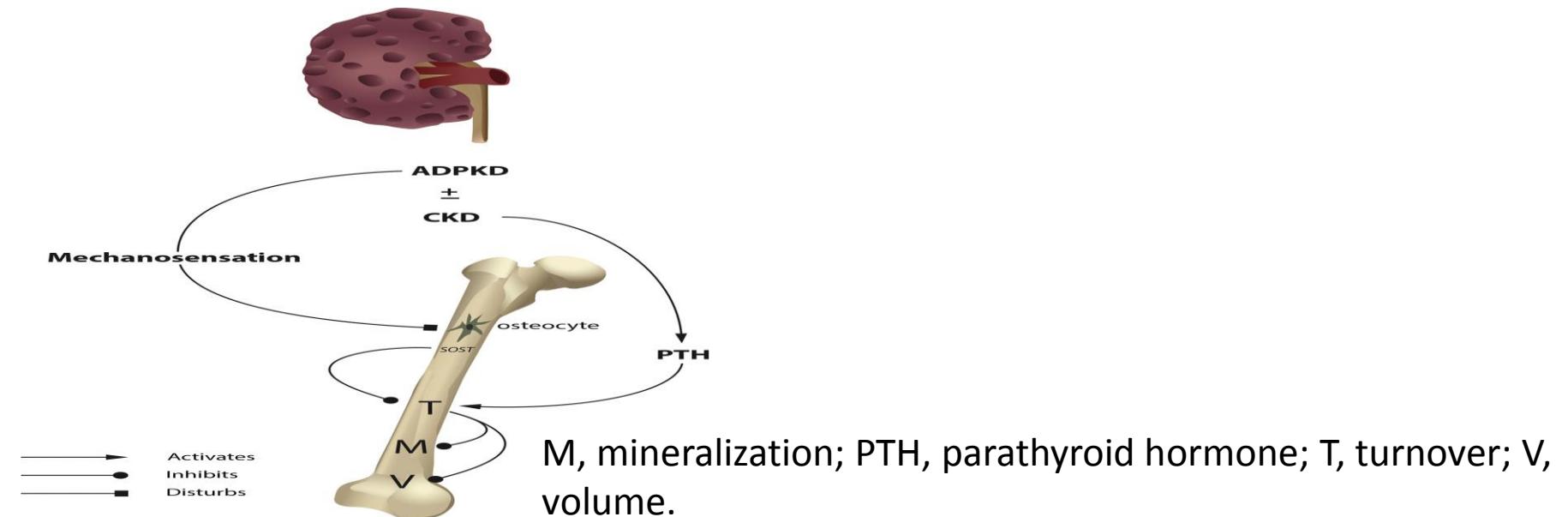
- Age 65 → Reduced osteoblast activity, sarcopenia, falls
- ADPKD → Abnormal bone microarchitecture, lower cortical strength
- CKD G5D → CKD-MBD, low-turnover risk
- Chronic steroids → ↓ osteoblasts, ↑ resorption, myopathy
- Long dialysis vintage → Progressive loss of bone quality
- Family history (sister hip fracture death) → Genetic predisposition to fragility
- PPI use → ↓ Ca absorption, ↑ hip fracture risk
- Calcium carbonate use → Positive Ca balance → ABD

Intermediate-risk features:

- Post-transplant metabolic bone changes
- Muscle weakness risk
- Reduced mobility

Low-risk features:

- No diabetes
- No active inflammation


Overall fracture risk: VERY HIGH

What Makes ADPKD Bone Different?

ADPKD-Specific Bone Considerations

- Altered **cortical bone geometry** independent of eGFR
- PKD-related signaling pathways may impair osteoblast function
- Reduced bone strength not fully explained by BMD
- Fracture risk may be underestimated by DXA alone

Fracture Risk Prediction Tools: FRAX vs QFracture vs Garvan

- **FRAX**

- Guideline-endorsed tool for treatment decisions
- Estimates 10-year risk of major osteoporotic and hip fractures
- Does **not** account for falls or CKD-specific bone abnormalities
- May **underestimate fracture risk** in advanced CKD

- **QFracture**

- Population-based clinical risk model
- Includes falls, comorbidities, and medication use
- Does **not require BMD**
- Limited validation in CKD and transplant populations

- **Garvan**

- Incorporates **number of prior fractures and falls**
- Optional use of BMD
- Performs well in elderly and high-fall-risk patients
- Does not include systemic disease or CKD-MBD variables

Use a fracture risk assessment tool
FRAX, QFracture, Garvan

In CKD patients, fracture risk tools complement—but do not replace—clinical judgment and CKD-MBD assessment.

Define Risk with Prediction Tools

Risk Stratification Using Prediction Tools

- FRAX® is **valid but may underestimate risk** in CKD G5D
Questionnaire
- Should include:
 - Secondary osteoporosis
 - Parental hip fracture
 - Body weight / BMI
- FRAX does *not* account for:
 - Sarcopenia
 - Frequent falls
 - Muscle weakness
- Vertebral Fracture Assessment (VFA) recommended when feasible

1. Age (between 40 and 90 years)

2. Sex Female Male

3. Weight kg kg / cm

4. Height cm

12. Femoral neck BMD Select BMD

Calculate **Clear**

Age: 65 BMI: 29.8 without BMD

THE TEN-YEAR PROBABILITY OF FRACTURE

Major osteoporotic	6.0 %
Hip Fracture	2.2 %

Adjust your results, try FRAXplus®

What does FRAXplus® do? Click here

1. Previous Fracture

2. Parent Fractured Hip

3. Current smoking

4. Glucocorticoids

5. Rheumatoid arthritis

6. Secondary osteoporosis

7. Alcohol 3 or more units/day

FRAX is a useful starting point, but not the final decision-making tool in CKD patients.

Define Risk with Prediction Tools

Questionnaire

1. Age (between 40 and 90 years)

65

2. Sex

Female Male

3. Weight

kg 86

kg/cm

4. Height

cm 170

5. Previous Fracture

6. Parent Fractured Hip

7. Current smoking

8. Glucocorticoids

9. Rheumatoid arthritis

10. Secondary osteoporosis

11. Alcohol 3 or more units/day

12. Femoral neck BMD

T-score

-3

Calculate

Clear

Age: 65 BMI: 29.8 with BMD

THE TEN-YEAR PROBABILITY OF FRACTURE

Major osteoporotic 14%

Hip Fracture 9.2%

Adjust your results, try FRAXplus®

What does FRAXplus® do? Click here

Risk factors

Risk level: probability of fracture, FRAX® value

High
≥7.5

Moderate
≥5.0 and <7.5

Low
<5.0

DXA

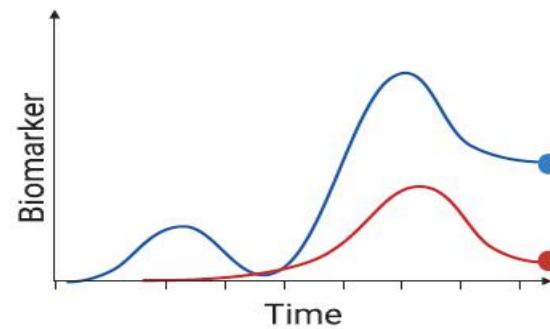
OP (Yes)

OP (No)

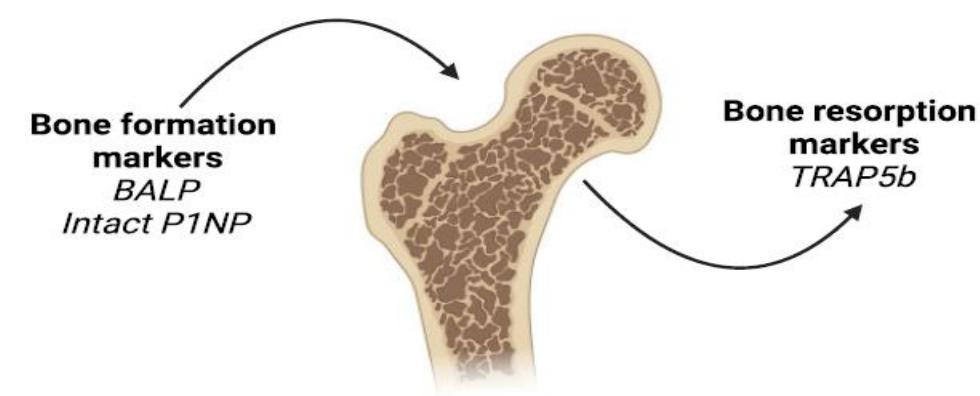
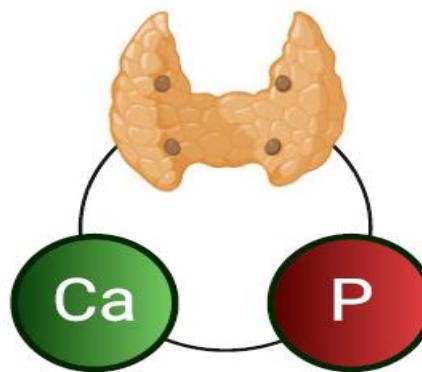
High + OP
FRAX® ≥7.5

Low risk
FRAX® <7.5

Pharmacological treatment


Life styles

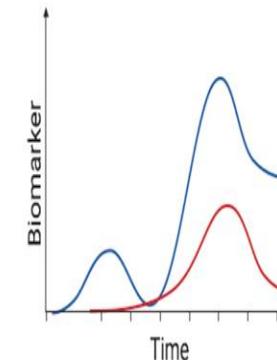
"In CKD G5D, FRAX is best used as a qualitative risk amplifier rather than a treatment threshold tool."

“Before ordering imaging, which laboratory tests are essential to characterize bone turnover in a dialysis patient?”

Biochemical markers of mineral and bone

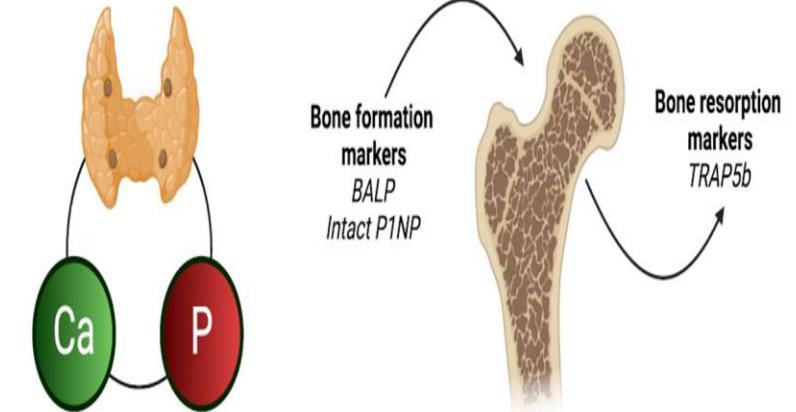
- Trends rather than single time points
- Consider calcium, phosphorus and PTH together
 - Add information on vitamin D, acidosis and alkaline phosphatase
- Consider novel biomarkers of bone turnover - beware renal clearance


Next Step: What Data Do We Need Now

Initial Data Required for Accurate Risk Profiling

1. Baseline biochemical markers

1. Calcium, phosphate
2. ALP
3. PTH
4. 25(OH)D
5. Serum bicarbonate



Biochemical markers of mineral and bone

- Trends rather than single time points
- Consider calcium, phosphorus and PTH together
- Add information on vitamin D, acidosis and alkaline phosphatase
- Consider novel biomarkers of bone turnover - beware renal clearance

2. Bone turnover markers (CKD-compatible):

1. Bone-specific ALP (BALP)
2. Intact P1NP
3. TRAP-5b

Baseline Laboratory Evaluation in CKD G5D Patient

Patient Results:

- **Total Calcium:** 7.9 mg/dL (Albumin 3.5 g/dL) → Corrected Ca ≈ 8.2–8.3 mg/dL (low-normal)
- **Phosphate:** 6.0 mg/dL → Elevated
- **PTH:** 450 pg/mL → Upper target range for dialysis
- **ALP:** 550 IU/L → Significantly elevated
- **Bicarbonate:** 23 mEq/L → Acceptable
- **25(OH)D = 25 ng/mL** → Vitamin D insufficiency

Interpretation:

- High ALP strongly suggests high-turnover bone disease (likely secondary hyperparathyroidism).
- PTH of 450 (with ALP 550) is consistent with active turnover, not adynamic bone disease.
- Hyperphosphatemia indicates inadequate phosphate control → contributes to skeletal and vascular pathology.
- Calcium low-normal despite calcium carbonate + PPI use → possible impaired absorption.
- No evidence of overt metabolic acidosis.
- **Vitamin D insufficiency**
 - Insufficient levels may contribute to low-normal calcium and impaired intestinal absorption, especially in the setting of chronic PPI use.
 - Adequate vitamin D repletion is essential to reduce the risk of hypocalcemia after antiresorptive therapy.

Calcium & Vitamin D Assessment

Management:

- Initiate nutritional vitamin D repletion:
 - *Cholecalciferol 2000–4000 IU daily or 50,000 IU weekly for 6–8 weeks*
- Target 25(OH)D $\geq 30 \text{ ng/mL}$ before initiating antiresorptive therapy.
- Avoid excessive calcium supplementation; maintain total intake $<800\text{--}1000 \text{ mg/day}$.
- Strongly consider discontinuing **pantoprazole** to improve calcium absorption.
- Recheck calcium, phosphate, and PTH after vitamin D repletion.
- Intensify **non-calcium-based phosphate binders** (e.g., sevelamer).
- Avoid increasing calcium-based binders due to vascular calcification risk.
- Reinforce dietary phosphate restriction.

“In dialysis patients, phosphate and vitamin D must be corrected before osteoporosis treatment, but PTH should be optimized—not normalized—to avoid adynamic bone disease.”

Recommended Ca intake

- *In children, keep total Ca intake within the age-appropriate normal range.*
- *In adults, ensure a total Ca intake of 800-1000 mg/d and do not exceed 1500 mg/d.*
- *Use online calculators to estimate Ca intake*
 - *Include Ca-containing medications*

Recommended Vitamin D levels

- *In children, maintain vitamin D levels $>75 \text{ nmol/L}$ (30 ng/mL)*
- *In adults, keep vitamin D levels within the recommended range of the background population.*

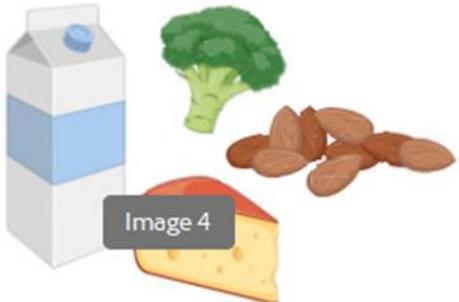


Image 4

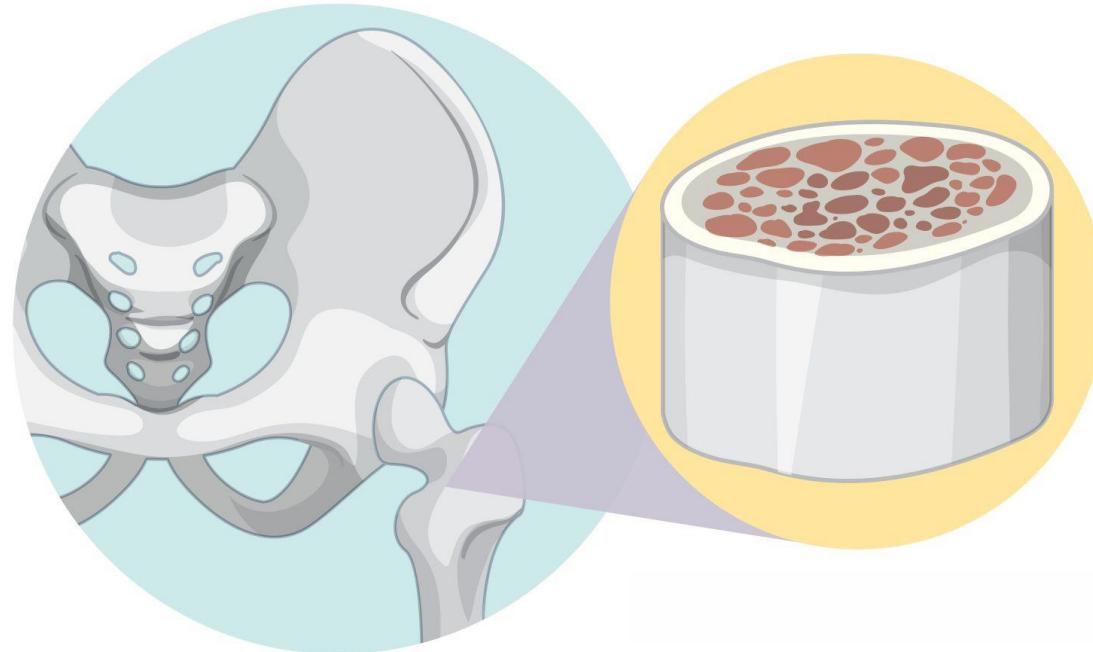
Biomarkers of Bone Turnover

6. Use CKD-Appropriate Biomarkers to Define Bone Turnover

- Recommended markers:
 - PTH (imperfect but useful)
 - ALP / BALP (excellent indicator of turnover)
 - Intact PINP (formation marker; not cleared by kidney)
 - TRAP-5b (resorption marker)
- Avoid:
 - CTX, NTX, total PINP → falsely elevated due to renal clearance.

Case Interpretation:

- PTH 450 + ALP 550 → **high-turnover bone disease highly likely**
- A bone biopsy is *not required* at this stage because labs strongly suggest high turnover.

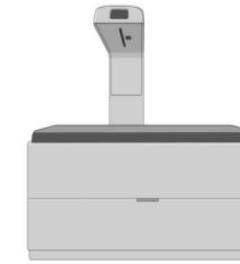

In advanced CKD, osteoporosis treatment should be integrated with CKD-MBD management—neither delayed nor isolated.”

Why Bone Biopsy Is Not Required Here?

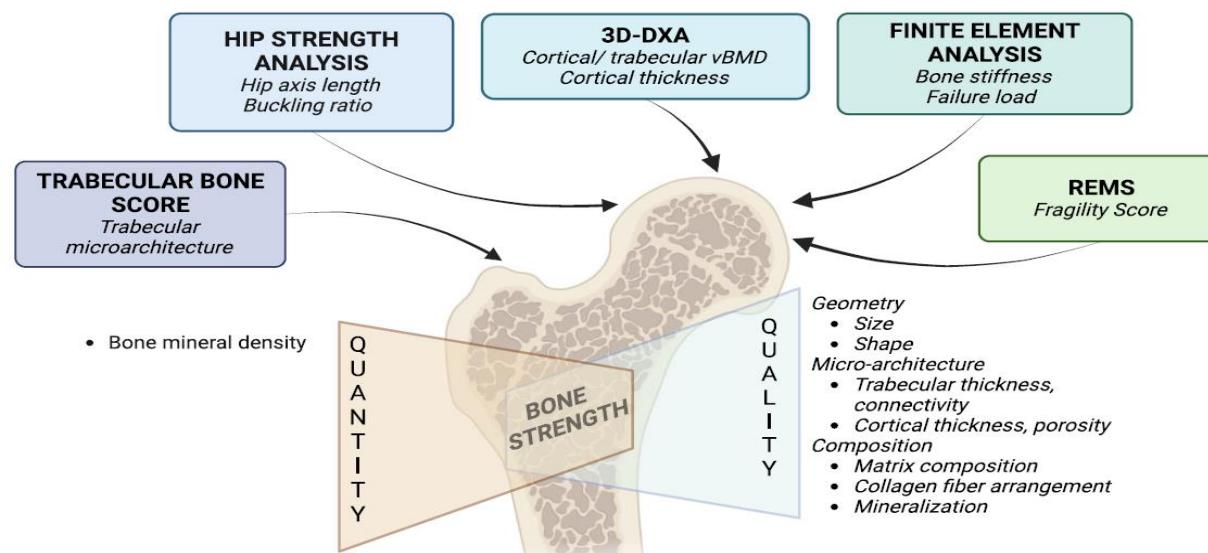
- Concordant biochemical markers (PTH + ALP)
- Clear high-turnover pattern
- No discordance between labs and imaging
- Biopsy reserved for unexplained fractures or conflicting data

What Are the Next Diagnostic Steps?

1. DXA scan:


1. Hip (most reliable in CKD)
2. Spine (may be falsely high due to vascular calcification)

2. Optional:


1. **Trabecular Bone Score (TBS)** for microarchitecture
2. **VFA (vertebral fracture assessment)**
3. Compare with previous transplant-era DXA if available

<input checked="" type="checkbox"/>	Widely available
	Low-radiation exposure
	Clinical standard for osteoporosis
<input type="checkbox"/>	Susceptible to artifacts
	No separation of cortical/trabecular bone
	Does not provide measure of bone quality

	No evidence for routine use in children
	Should not be repeated unless clinically indicated (~2 yrs)
	Screen all patients >50 yrs or postmenopausal

DEXA Report (Hip & Lumbar Spine)

Site / Parameter	BMD (g/cm ²)	T-score	Z-score	Interpretation
Femoral Neck	0.57	-3.0	-1.4	Osteoporosis
Total Hip	0.68	-2.6	-1.1	Osteoporosis
Lumbar Spine (L1–L4)	1.01	-1.5	0.0	Osteopenia*
Trabecular Bone Score (TBS)	—	—	—	1.15 (Degraded)
VFA (Lateral Spine)	—	—	—	No morphometric fracture

Integrated Interpretation

- **Femoral Neck T-score -3.0** → diagnostic of **osteoporosis**, high fracture risk
- **Total Hip T-score -2.6** → osteoporosis, consistent with cortical thinning typical of CKD
- **Lumbar Spine T-score -1.5** likely **artificially higher** due to aortic calcification and degenerative spine changes; underestimates severity
- **TBS 1.15 (Degraded)** indicates **severe trabecular deterioration**, often seen in:
 - Long-term CKD
 - Glucocorticoid exposure
 - ADPKD with microarchitectural defects
- **VFA: No morphometric vertebral fractures**, but the absence does not negate elevated fracture risk

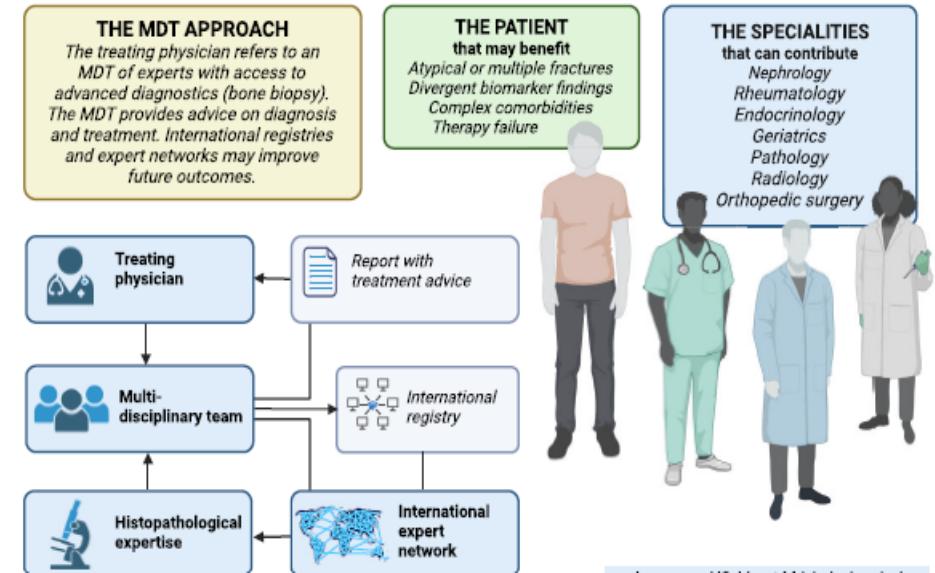
Clinical Implications

Based on Labs + DEXA + TBS:

- The patient has **high-turnover bone disease** (high ALP, PTH 450).
- BMD and TBS confirm **structural bone fragility**.
- He is a **very-high fracture risk** dialysis patient.
- This patient meets **diagnostic criteria for osteoporosis** based on hip and femoral neck T-scores.
Combined with degraded TBS and CKD-specific risk factors, the overall fracture risk is **very high**, even without vertebral fractures.

Treatment decision must consider **turnover status** to avoid adynamic bone disease.

Treatment Strategy Framework

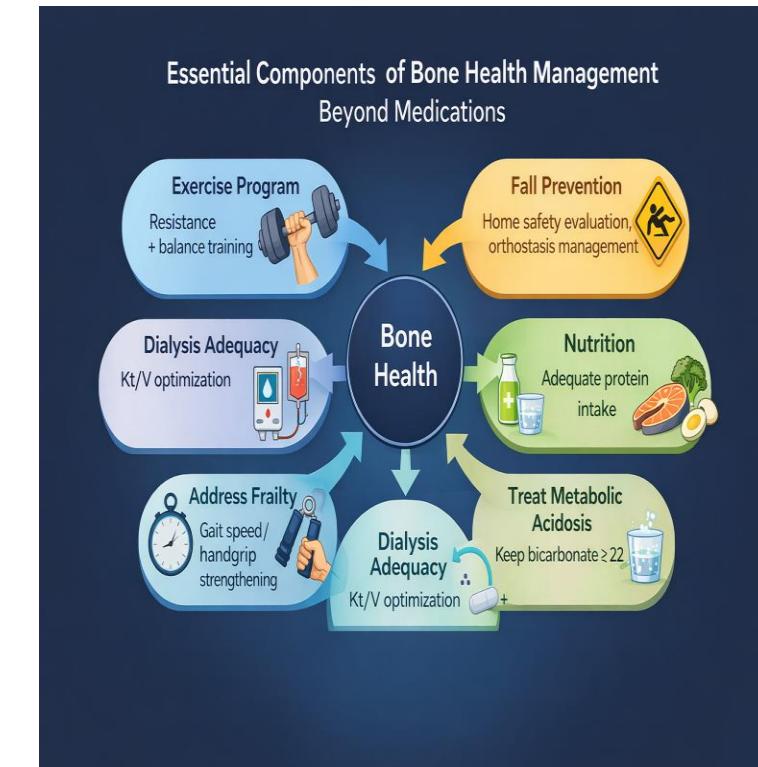


Therapeutic Approach Must Integrate:

1. Bone turnover status
2. CKD-MBD biochemical control
3. Fracture risk category
4. Life expectancy & dialysis status
5. Transplant candidacy

General Principles:

- Normalize calcium, phosphate, and vitamin D *before* osteoporosis therapy.
- Avoid adynamic bone disease.
- Use agents with evidence in CKD G5D when possible.
- Coordinate care with nephrology/endocrinology/rheumatology.



Additional Non-Pharmacologic Recommendations

Essential Components of Bone Health Management Beyond Medications

- **Exercise program:** resistance + balance training
- **Fall prevention:** home safety evaluation, orthostasis management
- **Nutrition:** adequate protein intake
- **Dialysis adequacy:** Kt/V optimization
- **Treat metabolic acidosis:** keep bicarbonate ≥ 22
- **Address frailty:** gait speed / handgrip strengthening

Correct Modifiable CKD-MBD Abnormalities

Before Pharmacologic Osteoporosis Therapy:

- Lower serum phosphate to 3.5–5.5 mg/dL
- Reduce or discontinue calcium carbonate (risk: vascular calcification + ABD)
- Optimize sevelamer dose
- Stop PPI (pantoprazole) → improves calcium absorption
- Replete **25(OH) vitamin D**
- Consider low-dose calcitriol if PTH rises after phosphorus control
- Ensure adequate dietary protein to reduce sarcopenia

Which Osteoporosis Medications Are Suitable in CKD G5D with High Turnover?

Why Bone Turnover Matters Before Choosing Osteoporosis Therapy?

- CKD G5D patients can have **high, normal, or low (adynamic) bone turnover**.
- **Anti-resorptives** (bisphosphonates/denosumab) may worsen **adynamic bone disease**.
- **Anabolics** (teriparatide/abaloparatide) may worsen **high-turnover disease**.

- Lab pattern in this patient:
 - PTH 450 pg/mL → moderately elevated
 - ALP 550 IU/L → strongly elevated
 - Phosphate 6 mg/dL → uncontrolled
- → Pattern highly consistent with **high-turnover bone disease**.

This patient is NOT adynamic → antiresorptive therapy can be considered safely.

Pharmacologic Options in This High-Turnover Dialysis Patient

✓ 1. Denosumab (Preferred in CKD G5D)

- Not renally cleared
- Effective at increasing BMD and reducing fractures
- Can be used in dialysis patients
- **Risk:** hypocalcemia → must correct Ca, Vit D first

✓ 2. Bisphosphonates (Use with caution)

- Accumulate in bone; long half-life
- Limited evidence in dialysis
- Risk of adynamic bone disease is **low when turnover is high**
- Consider **alendronate** or **ibandronate** if denosumab unsuitable

✗ Not Recommended in High Turnover:

- **Teriparatide / abaloparatide**
(Anabolics worsen high-turnover and hyper-PTH state)

✗ Avoid:

- Romosozumab → limited data in dialysis; risk of vascular calcification

Selecting the Best Drug for This Patient

Why Denosumab Is the Optimal Choice Here:

- High fracture risk + severe osteoporosis
- High bone turnover (ALP 550, PTH 450) → safe to use antiresorptive
- Denosumab has evidence in **dialysis patients**
- Faster reduction of bone resorption compared to bisphosphonates
- No risk of accumulation
- Convenient 6-monthly injection
- Works even when BMD is low + TBS degraded

Monitoring Required:

- Check Ca, P, ALP, PTH 7–10 days after injection
- Ensure vitamin D level > 30 ng/mL
- Calcium supplementation *only if needed*, avoid excess

Follow-Up & Monitoring Plan

3–6 Month Follow-Up:

- Serum Ca, P, ALP, PTH
- Vitamin D
- Assess muscle strength & fall risk
- Check for hypocalcemia post-denosumab
- Adjust binders and dialysate calcium if needed

12–24 Month Follow-Up:

- Repeat DXA hip \pm TBS
- Evaluate fracture status and treatment response
- Reassess turnover (PTH + ALP trends)

Follow-Up at 3 Months

3-Month Follow-Up Findings:

- ✓ Corrected Ca: **8.4 mg/dL**
- ✓ Phosphate: **4.5 mg/dL**
- ✓ ALP: **300 IU/L** (down from 550 → -45%)
- ✓ PTH: **320 pg/mL**
- Serum calcium stable
- Phosphate improved with reinforced sevelamer adherence
- PTH decreased moderately (expected)
- ALP trend declining, suggesting reduction in turnover
- No new falls or fractures reported
- Physical performance: improved gait speed, stable grip strength

Treatment response is appropriate; no biochemical signal of adynamic bone disease.

Continue current therapy and monitoring.

Follow-Up at 6 Months

6-Month Follow-Up:

- ✓ Corrected Ca: **8.7 mg/dL**
- ✓ Phosphate: **4.6 mg/dL**
- ✓ ALP: **260 IU/L**
- ✓ PTH: **290 pg/mL**
- ✓ 25-OH D: **34 ng/mL**
- Received second denosumab dose
- Calcium and vitamin D remained adequate
- Phosphate within acceptable limits
- ALP significantly improved
- PTH trending slightly lower but not suppressed
- Patient reports better functional mobility, no back pain or height loss
- No signs of hypocalcemia after second dose

The patient shows **biochemical improvement** and **clinical stabilization** of bone health. He remains high-risk but is responding appropriately to therapy.

New Clinical Decision: Candidate for Repeat Kidney Transplant

Clinical Update at 6 Months:

The patient has now decided to pursue a **second kidney transplantation**. Bone health evaluation must be re-assessed as part of the **pre-transplant workup**.

Key Questions:

- How should ongoing osteoporosis therapy be managed now?
- What additional assessments are required before transplantation?
- Are modifications needed due to upcoming immunosuppression?

Pre-Transplant Bone Health Re-Evaluation (Post-Treatment)

At the Time of Pre-Transplant Assessment:

1. Biochemical Re-Assessment:

1. Calcium stable
2. Phosphate better controlled
3. ALP trending downward
4. PTH moderate (not suppressed)
5. Vitamin D repleted

2. Treatment Response:

1. Denosumab tolerated well
2. No oversuppression of turnover
3. No hypocalcemia episodes

3. Clinical Status:

1. No fractures
2. Improved mobility
3. Reduced frailty markers

The patient enters the transplant evaluation phase with **stabilized bone turnover**, reduced risk of post-transplant hypocalcemia, and improved structural bone health.

What Additional Bone Assessment Is Needed Before Transplant?

Pre-Transplant Bone Workup Includes:

- Updated labs: Ca, P, ALP, PTH, 25(OH)D, bicarbonate
- Verification of stable turnover (PTH 200–500 acceptable)
- Medication review (ensure no calcium overload)
- Fall risk evaluation
- Consider **repeat DXA only if >12 months old**
- No need for bone biopsy due to:
 - High-turnover pattern
 - Good response to therapy
 - Stable biomarker trends

Managing Denosumab in a Transplant Candidate

How Denosumab Influences Pre-Transplant Planning:

- Safe to continue **before transplant**
- Must anticipate risk of **post-transplant hypocalcemia** when PTH rapidly declines
- Ensure:
 - Vitamin D sufficiency
 - Calcium monitoring immediately post-transplant
 - Avoid excessive calcium loading before surgery
- Coordinate with transplant team regarding timing of the next dose

Plan:

- Continue current dosing schedule
- Increase monitoring frequency during the peri-transplant period
- Maintain phosphate control to avoid post-op hypocalcemia

Final Summary of Follow-Up and Pre-Transplant Bone Management

- Osteoporosis therapy initiated **while on dialysis** due to very-high fracture risk.
- Follow-up at 3 and 6 months showed:
 - Stable calcium
 - Improved phosphate control
 - Declining ALP
 - No signs of adynamic bone disease
- Patient became a **candidate for re-transplantation** at 6 months.
- Pre-transplant workup confirms **stable bone turnover and adequate vitamin D**, allowing continuation of denosumab.
- Patient is now optimally prepared for the **early post-transplant high-risk window** when rapid bone loss typically occurs.

Peri-operative Course:

- **Day 0 (pre-op):** Corrected Ca **8.6 mg/dL**, P **4.1 mg/dL**, PTH **260 pg/mL**
- **Day 1 post-op:** Ca **8.0 mg/dL** (mild fall), PTH **150 pg/mL**
- **Day 2 post-op:** Ca **7.6 mg/dL** → patient reports mild perioral numbness
 - Action: start oral calcium carbonate 1000 mg TID + calcitriol 0.25 µg BID; check Ca q12–24h
- **Day 5 post-op:** Ca **8.0 mg/dL**, symptoms resolved; continue oral supplements and taper per Ca trend
- **2 weeks post-op:** Ca **8.3 mg/dL**, PTH **95 pg/mL** (expected decline), ALP **220 IU/L**

Interpretation:

- Rapid fall of PTH post-transplant is expected and contributed to transient hypocalcemia, potentiated by prior denosumab (antiresorptive effect). Early detection allowed prompt oral therapy and avoided IV calcium
- **Action going forward:**
 - Continue Ca monitoring until stable >7–10 days.
 - Reassess timing of next denosumab dose
 - consider delaying additional antiresorptive until PTH and Ca stabilized and MDT discussion completed.

Post-Transplant Follow-Up (1–12 months)

- **First month:** daily → q48h Ca checks until stable; monitor symptoms.
- **1–3 months:** Ca, P, PTH weekly → monthly as stabilizes; check ALP monthly.
- **6–12 months:** repeat DXA at 12 months if clinically indicated; reassess fracture risk and need for continued antiresorptive therapy.
- **If persistent hypocalcemia or very low PTH (<50 pg/mL)** → endocrinology consult; consider holding further denosumab.
- **If stable Ca/PTH and no fractures** → plan MDT decision on continuation of antiresorptive vs switching to alternative agent.

pre-transplant denosumab reduces early post-transplant bone loss risk but mandates **proactive peri-op Ca surveillance** and MDT coordination.

Lessons from This Case

- DXA alone is insufficient in CKD
- Bone turnover defines safe therapy
- Treat osteoporosis and CKD-MBD **together**, not sequentially
- ADPKD adds a layer of hidden skeletal fragility
- Pre-transplant bone optimization changes post-transplant outcomes

Bone Health Across the CKD–Transplant Continuum

Thank you for your attention

Questions & Discussion

Bone Disease in CKD requires early recognition, integrated management, and multidisciplinary care—before and after transplantation.

